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Abstract— Physical interaction with textiles, such as assistive
dressing or household tasks, requires advanced dexterous skills.
The complexity of textile behavior during stretching and pulling
is influenced by the material properties of the yarn and by
the textile’s construction technique, which are often unknown
in real-world settings. Moreover, identification of physical
properties of textiles through sensing commonly available on
robotic platforms remains an open problem. To address this,
we introduce Elastic Context (EC), a method to encode the
elasticity of textiles using stress-strain curves adapted from
textile engineering for robotic applications. We employ EC to
learn generalized elastic behaviors of textiles and examine the
effect of EC dimension on accurate force modeling of real-world
non-linear elastic behaviors.

I. INTRODUCTION

Manipulation of deformable objects such as textiles is

common in medical robotics [1], human-robot interaction [2],

automation of household tasks [3], assistive dressing [4], [5].

However, as discussed in [6], textile objects are challenging

when it comes to manipulation due to complex dynamics and

often unknown physical properties (e.g. elasticity, friction,

density distribution). These properties depend on the yarn

material and textile construction technique and may be diffi-

cult to estimate in online robotics manipulation scenarios [7].

We address the problem of encoding elastic properties of

textile objects, to learn data-driven models that generalize

to variations of elastic properties, see Fig. 1. Modeling the

elastic behavior of textiles has been addressed in two rather

distant communities: textile engineering [8] and computer

graphics [9], [10]. The analytical models from these com-

munities are computationally expensive and commonly not

applicable in real-time robotic manipulation. Moreover, such

models build on parameters measured with high-precision

devices under controlled experiments [11], [12]. Today, there

are no commonly adopted and annotated datasets for which

these parameters are provided, requiring thus alternative

strategies to encode elastic properties of textiles.

Our previous work introduced a taxonomy considering

the yarn material and construction techniques [13] to under-

standing textile properties. It relied on the physical interac-

tions (pulling and twisting) and force-torque measurements.

We build upon this work and encode elastic behaviors of

textiles through Elastic Context (EC). To formulate the

Elastic Context (EC) we draw inspiration from industrial

1The authors are with the Robotics, Perception and Learning Lab, EECS,
at KTH Royal Institute of Technology, Stockholm, Sweden albertal,
moletta, alfrei, mwelle, okr, dani@kth.se

2The authors are with Carnegie Mellon University, Pittsburgh, USA
yufeiw2, dheld, zerickso@andrew.cmu.edu

Fig. 1: The role of elasticity in the manipulation of different

textile samples, exhibiting different behaviors under the same

pulling force.

techniques to characterize textiles, namely the stress-strain

curve [14]. These curves can be obtained by recording the

forces perceived by a robot when manipulating different

textiles. Additionally, we introduce the use of the EC to

condition Graph Neural Networks (GNNs) to model the

behaviors of textiles with different elastic properties.

We evaluate experimentally the EC and the conditioned

GNN on synthetic data obtained in the PyBullet simu-

lator [15], demonstrating the ability of our approach to

encode the complex elastic behavior of a wide range of

textile. Furthermore, with force measurements collected on

two Franka-Emika Panda robots interacting with textiles, we

show that increasing the dimensionality of the EC plays an

important role in accurately modeling the complex behaviors

of textiles when an interactive scenario is considered. Finally,

we briefly discuss the limitations of current hardware setups

for sensing textile physical properties that go beyond elas-

ticity. In summary, our contributions are:

• Elastic Context: a way of encoding elastic properties of

textiles suitable for robotic manipulation tasks;

• A detailed experimental evaluation demonstrating, both

in simulation and the real world, that EC outperforms

methods that do not consider elastic properties when

modeling linear and non-linear elastic behaviors of

textile.



II. BACKGROUND

Physical properties of textiles like elasticity, surface fric-

tion, and flexibility are determined by the yarn material and

the construction technique [16]. Common yarn materials are

cotton, wool, or polyester. In modern textiles, these raw

materials are blended with elastomers, such as elastane, mak-

ing the yarn more flexible [17]. The construction technique

(woven or knitted) determines how the yarn threads are

interlaced or interloped; see our taxonomy in [13]. Woven

textiles, such as jeans, are produced with two sets of tightly

interlaced yarns that make the textile rather rigid. Knitted

textiles instead, are made with one interloped thread and

loops that generate space between parallel running threads,

resulting in a stretchable textile. These properties play a

fundamental role on the interaction dynamics involved in the

robotic manipulation of textiles, which can be characterized

by the deformation of the textile when an external force, also

called stress, is applied [18].

In particular, these interactions might come either from

robot actions, such as stretching or shearing the object, or

they could be due to collisions with external objects, like

the body of a person in an assistive dressing scenario. In

both cases, we can reason about the interaction dynamics by

identifying three different stages as shown in in Fig. 2. In the

first stage (free manipulation), no stress is involved during the

manipulation as the deformable nature of the textile makes it

compliant with the robot’s movement or external objects. In

the second phase (stress manipulation), the textile starts to

induce forces on the end-effector and its elastic properties

become relevant to characterize the interaction dynamics

of the manipulation. Finally, after a certain force known

as rupture force, the textile breaks. Often in robotic tasks,

objects are manipulated within the free manipulation phase.

Nevertheless, precise modeling of the stress manipulation

phase can be useful for applications requiring a constraint

over the forces exerted on the deformable object or to assure

that a specific action is correctly performed [2], [6]. So far,

these tasks have been studied with the implicit assumption

that the elasticity of different manipulated samples do not

exhibit large variations in their dynamics, despite the wide

diversity of real-world elastic textiles, such as first-aid ban-

dages, t-shirts, jeans.

The complexity of the tasks robots will be faced with

in domestic and industrial setups that consider textiles will

require the ability to identify elastic properties online. In

textile engineering, the evaluation of the elastic behavior of

textiles is performed through the stress-strain test, where a

fixed load is applied to a piece of textile and the percentage

of displacement, also called strain, is measured [11], [14].

In robotics, however, we often do not robots endowed with

advanced sensing tools and most of the interaction has

historically relied on visual sensing [19]. We need therefore

to rely on common force-torque sensors to define suitable

alternative to the stress-strain test. In this work we propose

the EC, a way of encoding elastic behavior of textiles

that can be obtained from the classical robot sensing and

Fig. 2: Typical stress curve for manipulation of elastic

textiles, categorised in three stages: free manipulation, stress

manipulation and break point. More details in text.

can be leveraged by a data driven model to generalize its

performances on a wide range of textiles with different

elastic properties.

III. RELATED WORK

In this section, we review related work regarding elasticity

of textiles from both the analytical and data-driven per-

spective. Recent reviews provide an overview of deformable

objects, including textiles, and their use in dexterous robotic

manipulation [20], [21].

A. Analytical Models of Elasticity in Textiles

Analytical models of textiles usually rely on physics-based

modeling and geometric representations, such as particles or

graphs [21]. Position-based Dynamics (PBDs) approaches

model the displacements of a discrete system of particles

by applying geometrical constraints [18]. This strategy is

computationally efficient but struggles to model net forces

and is resolution dependent [11]. Graph models overcome

these problems by encoding the interaction between the

particles in the edges of the graph. In mass-spring mod-

els, the edges represent springs following Hooke’s law to

encode linear elastic relationship [22]. Damping, bending,

and shearing factors can be integrated to reproduce more

complex behaviors. However, linear approximations of the

textile dynamics underperform with large deformations. The

high-strain regime cannot be ignored when modeling textiles

as such deformations may occur near the garment’s seams

or when parts of the textile are physically constrained.

Non-linear models, such as the Neo Hookean or the St.

Venant–Kirchhoff, have the advantage of being more accu-

rate than the mass-spring models, but their computational

complexity is not suitable for real-time simulations [9], [23],

[24]. In robotic manipulation tasks, task-specific and low-

dimensional textile representations are often favored over

a precise description of all possible mechanical behaviors

of the textiles [25]. Finding a suitable trade-off between

the model accuracy and numerical efficiency is therefore of

fundamental importance [26].



B. Data-driven Models of Textiles

A limitation of analytical models is the requirement of

having precise knowledge of the physical properties of

the textile, as these properties are often unknown in real-

world scenarios. Despite the effort to simplify the complex

measurement tools used in textile engineering, the estimation

of textile properties remains highly engineered [22], [27].

Black-box models like neural networks provide a viable solu-

tion to model dynamic behavior without explicit knowledge

of all the properties. GNNs have shown to be a suitable

framework in the context of learning graph-based dynamics,

being employed in a variety of complex domains including

deformable objects [28]–[30]. Battaglia, et al. [31] proposed

Interaction Networks (INs) to learn a physical engine to

capture local interactions among nodes by modeling them

through a complete graph. Li et al. [32] extended this

framework by proposing Propagation Networks (PNs), which

enable instantaneous propagation of forces by multi-step

message passing. These approaches have shown excellent

results in modeling deformable objects, but they assume the

properties of the object to be known a priori. In this work

we relax this assumption suggesting to learn a large variety

of elastic behaviors by conditioning a GNN on our proposed

Elastic Context.

IV. ELASTIC CONTEXT FOR DATA-DRIVEN MODELS

To account for the wide range of possible elastic responses

that textiles may have, we learn a graph-based dynamics

prediction model using a GNN, which we condition on

information about the textile elasticity - Elastic Context (EC).

A. Elastic Context

A potential measure of a material’s elasticity is the elastic

modulus, which evaluates the material’s resistance to de-

formation under stress [18]. Its value can be derived by

measuring the slope of the stress-strain curve corresponding

to a specific material or textile sample. The stress σ is

defined as the deformation force F [N] acting on the cross-

sectional area A [m2] of the sample, while the strain ε

corresponds to the percentage of displacement ∆l of the

sample with respect to its original length l0. Using these

quantities, the elastic modulus is calculated as e = σ/ε .

Fig. 3 presents stress-strain curves for two real-world tex-

tile samples. The values were obtained from force-feedback

readings of the dual-arm robotic setup shown in Fig. 4.

The robots were pulling the samples with l0 = 0.18 m and

A = 0.18 × 10−3 m2 until a stress σmax = 30 KPa was

reached. Fig. 3 indicates how encoding elastic properties

of textile with the elastic modulus can only describe small

displacements and linear behaviors. We observe that linear

approximations can accurately describe the rigid sample

(blue line) but loses accuracy for the elastic sample (red line),

which increases its rigidity with increasing stress.

To overcome the limitation of the elastic modulus, we

define EC as the combination of elastic modules of a given

textile evaluated at nEC equidistant points between 0 and

σmax on the stress-strain curve, where nEC determines the

Fig. 3: Stress-strain curves of a rigid (blue) and an elastic

(red) textile sample: with nEC = 1 we recover the elastic

modulus, describing a linear elastic behavior that accurately

represents the rigid sample (blue) but not the elastic one

(red); with a higher-dimensional EC (nEC = 10), we are

able to better describe the non-linear behavior of the elastic

sample.

dimensionality of the EC. We thus represent the EC as a

vector EC = [e1, ...,enEC
] ∈ R

nEC , where ei = σi/εi is the

elastic modulus evaluated from the textile stress-strain curve

at the corresponding stress σi. Since both stress and strain

measurements are normalized by the size of the sample, the

EC is a consistent definition of elasticity that is comparable

between textiles of different sizes as long as σmax is fixed.

B. Graph Model

We propose to represent textiles as graphs, and to learn

their dynamics using GNNs [33], [34]. We can thus formulate

the problem of learning the force and position dynamics

of textiles as learning the parameters θ of a GNN Λθ .

Specifically, let Gk = (Vk,Ek) be a graph representing a

textile sample k ∈ K, where V is the set of nodes, E the

set of edges and K is the set of all possible elastic samples.

We define the features of each node v ∈Vk by their position

xt
v ∈ R

3 in the Euclidean space at time step t. The edges

e ∈ Ek instead describe the elastic relation between two

connected nodes. We propose to define the features of the

edges as ECk ∈R
nEC evaluated for the specific elastic textile

k. EC is therefore a feature shared among all the edges

encoding the elastic property of the textile into Gk.

At time t, a dual arm robotic manipulator grasping the

textile applies an action at = ∆xt
vgrasp

∈ R
3 at the grasped

nodes vgrasp ∈ Vk, resulting in new positions xt+1
v of the

nodes and a textile specific force F t+1
k perceived at the end-

effectors. Our goal is to learn a model that leverages the EC

to predict xt+1
v and F t+1

k , given the initial state of Gt
k and the

action at applied to the textile.

We employ a standard message-passing architecture for the

GNN model Λθ [32]. The input graph is constructed by first

concatenating the action to the features of the grasped nodes.



The features of both nodes and edges are then projected

into latent representations, respectively h0 and c, through

learned encoders parameterized with a Multi-layer Percep-

tron (MLP). Subsequently, every node aggregates messages

from its neighbors via T propagation steps, where each

propagation leverages the elastic information embedded into

the features of the edges to compute the final update of the

features of the nodes. In particular, for the propagation step

τ ∈ [1,T ], the features of each node get updated follows:

hτ

i = Φ

(

∑
s∈Ni

Ψ
(

hτ−1
i ,hτ−1

s ,c
)

)

∀vi ∈Vk, (1)

where Ni denotes the set of neighbor nodes of node i, Ψ is

a message-passing network that propagates the information

of each node i to its neighbors, and Φ is an aggregation

function of the total information received by each node. We

parametrized both Ψ and Φ via separate MLPs. Finally, we

encode the features of each node hT
i to obtain the estimate

of the displacement of each node in Gt+1
k and the force-

feedback F t+1
k perceived by the robot in the next time-step

t +1. This process is done by two projection heads (MLPs),

where the final value of F t+1
k is the result of an average

pooling layer. The overall model Λ can be learned using a

dataset D = {(Gt
k,G

t+1
k ,F t+1

k ,at
k,ECk)}∀k∈K , optimising the

parameters θ using a supervised loss on the prediction of the

nodes position and the force exerted at the grasp-nodes:

L = ED

[

d(Λθ (G
t
k,a

t
k,ECk), (G

t+1
k ,F t+1

k )
]

, (2)

where d is a measure of the distance between the prediction

and the ground-truth of graphs and forces. In our case, d is

implemented as the sum of Mean-Squared Error (MSE) of

the graph’s position and of the force.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the EC in

modeling linear and non-linear dynamics of textile objects

for robotic manipulation tasks. In particular, we show using

simulation that EC with GNNs leads to more accurate force-

feedback predictions of unseen elastic textiles. Furthermore,

we analyze the role of the dimensionality of EC both in simu-

lation and real-world scenarios, highlighting the importance

of increasing the EC size (nEC) in presence of non-linear

force dynamics.

A. Experimental Setup

Task: We evaluate the performance of EC in predicting

forces perceived by a robot when manipulating unseen elastic

samples. To this end, we devised a two-stage simplified assis-

tive dressing task. In the first stage, a dual-arm robot is tasked

to stretch a textile up to a maximum stress σmax = 3×104

Pa, corresponding to a Fmax = σmax ×A0 [N] force perceived

at the end-effector for a textile with cross-sectional area A0

[m2]. The forces recorded during this interaction are used to

recover the EC, following the procedure defined in Section

IV. In the second stage, the same dual-arm robot is tasked

with pulling the sample over a sphere, resembling the head

of a person, up to a cumulative gripper displacement of amax

Fig. 4: Simulated (left) and real-world (right) environments

to instantiate the simplified assistive dressing task: the y-

axis corresponds to the pulling direction used to collect the

context, while the z-axis is related to the task execution.

[cm] from the instant the textile starts to induce force on the

end-effector.

The goal of our model is to perform a force-forecasting

task, which consists of predicting the force response of

the textile from the moment of contact with the object

until the goal displacement is reached. We reproduced the

aforementioned scenario both in the real world and in the

PyBullet simulator [15], [35]. An overview of the setup

is presented in Fig. 4, where two robotic grippers either

stretch a piece of textile (to obtain the EC) or pull it over

a rigid sphere (simplified assistive dressing scenario). To

manipulate the textile in the real-world setting we used two

Franka-Emika Panda equipped with Optoforce Force/Torque

sensors, while in the simulation we only used free-floating

end-effectors and their force sensors.

Data Collection: The simulation dataset

DSIM = {(Gt
k,G

t+1
k ,F t+1

k ,at
k,ECk)}k∈K was collected

performing the aforementioned task with parameters

A0 = 0.18×10−3 m2 and l0 = 0.18 cm. For each execution,

we varied the elastic properties k ∈ K of the simulated

textile. K = [20, 119] was defined empirically by selecting

the elasticity object parameter to avoid unstable behaviors of

the mesh during the collision with the sphere. We uniformly

sampled k with a step size of 1 while keeping the bending

and damping properties fixed to 0.1 and 1.5 respectively,

obtaining a total of 100 different elastic samples.

The ground truth forces used to obtain ECk and F t+1
k were

recorded from the force sensors on the virtual grippers. We

smoothed the force measurements using a Savitzky–Golay

filter [36] with a window size of 21 and a third-grade poly-

nomial to account for noisy measurements due to collision

interactions. We obtained Gt
k and Gt+1

k by accessing the

ground truth positions of all textile vertices disposed as

a 25× 25 3D mesh, which we subsequently downsampled

to 12 × 12. The gripper actions at
k are sequences of 33

displacements along the z-axis in the interval of [0,amax],
where amax = 12 cm, providing a total of 3300 data samples.

For the real-world experiments, where the focus is on

analysing the role of the EC for non-linear force dynamics,

we collected a dataset DRW = {(F t+1
k ,at

k,ECk)}k∈K . We leave



NO EC: all collapse to the mean

(a) Baseline

EC: more accurate predictions

(b) GNN + EC (nEC = 1)

Fig. 5: Force-forecasting predictions of the baseline model (a) and the GNNs + EC with dimension nEC = 1 model (b)

evaluated on 5 test elastic samples. The results show that the GNN + EC model generalizes to unseen elastic textiles,

leveraging the information provided by the EC.

the collection of the real-world ground-truth graphs Gt
k and

Gt+1
k for future work, which could be performed leveraging

recent approaches for state estimation and dynamics predic-

tion for cloth [30], [37]. Differently from the simulated

data, the ground truth elastic properties of the textile are not

easily accessible as their estimation would require specific

tensile tests as discussed in Section II. To overcome this

challenge, we fixed K according to a proxy categorization of

textile properties represented by the taxonomy proposed in

[13]. We chose 40 different combinations of yarn material

to maximize the variance of the elastic responses, while

keeping the construction technique fixed to knitted as the

one leading to more elastic behaviors. In particular, we chose

the following textile samples classified by their materials:

8 wool, 18 cotton and 10 polyester. Cotton and polyester

material classes contain samples with different percentages

of elastane.

GNN Implementation: To evaluate the role of the EC, we

instantiate a GNN with node and edge encoders composed

of two linear layers with 16 neurons each. The message-

passing and aggregation functions are implemented as two

linear layers with 16 neurons and T = 8. The graph prediction

and force prediction heads consist of two linear layers

with 16 hidden neurons respectively. We used the Rectified

Linear Units (ReLU) [38] as activation function and layer

normalization throughout the network except at the final

layers of each block [39]. We train the GNN for 2000 epochs,

with a batch size of 32, and a learning rate of 3×10−4. We

randomly split the 3300 data points from simulation with a

0.2 test-train split, ensuring that the elastic behaviors in the

test set are unseen. The parameters were optimized using

Adam [40]. Both the training objective and test evaluation

metric of the models are the Mean Squared Error (MSE)

between the model’s force prediction and the ground truth.

B. Elastic Context Evaluation

We start by evaluating the role of the Elastic Context in

the simulation environment, as the ground truth properties

of the underlying model of the textile are easily accessible.

We carry out the evaluation on the force-forecasting task,

where the goal is to predict the force evolution and the

state (represented as a graph) of unseen elastic textiles up to

the goal displacement of 12 cm. We compare our proposed

GNN informed with the EC to a baseline GNN that has no

EC information, and to an oracle GNN that has access to

the ground truth properties of the textile. Furthermore, we

evaluate the effect the size of the EC has on simulated force

dynamics, where we considered nEC = {1,2,5}.

Table I presents the test MSE of the force and graph

rollout predictions evaluated on 20 unseen elastic samples.

Regarding the force prediction, the results demonstrate that

the baseline model performs worse than the GNNs that have

access to elastic information. Moreover, the models that use

the EC have comparable performances to the oracle, showing

that EC enables the models to leverage elastic information.

These findings are further supported by the qualitative results

of the force forecasting prediction visualized in Fig. 5. The

baseline model (Fig, 5a) predicts the same force evolution

for all test samples, while the GNN with EC nEC = 1

(Fig, 5b) successfully covers a larger spectrum of the test set,

improving the accuracy of the predictions of different elastic

behaviors. These result confirm the relevance of encoding

elastic behavior of textiles, such as the EC, especially for

real-world applications requiring a constraint over the forces

exerted on the deformable object (e.g., assistive dressing or

TABLE I: Mean and standard deviation of the MSE of the

force-forecasting task rollout evaluated on 20 different test

samples.

Model FORCE error [N] GRAPH error [m]

Oracle 0.207± 0.239 0.885± 0.301
Baseline 3.169± 2.434 0.921± 0.292

GNN nEC = 1 0.269± 0.301 0.896± 0.234
GNN nEC = 2 0.235± 0.108 1.108± 0.411
GNN nEC = 5 0.246± 0.247 1.206± 0.409



(a) Real-world force profiles (b) Role of the EC dimension in real world

Fig. 6: (a) Real world force profiles of respectively a rigid sample (blue) with an almost linear behavior, and an elastic

sample (red) exhibiting a non-linear behavior. (b) Force forecasting MSE of the MLP models tested on 8 unseen real-world

samples. Results averaged over 6 randomly-seeded runs.

bathing assistance). Furthermore, we observe from Table I

that increasing the size of the EC does not lead to improve-

ments in the model performance, suggesting that nEC = 1 is

enough to describe the variety of simulated elastic behaviors

that assume a linear force dynamics.

Regarding the graph predictions, the quantitative results

of the evaluated models are presented in Table I. It can be

noticed that all the models perform comparably, reflecting

our design choices of using displacements as actions in

combination with textiles with isotropic elastic properties. In

this scenario, the displacement of the nodes depends solely

on the action applied by the robot, which is an information

available to all the models. The same consideration does

not hold if we consider textiles with anisotropic elastic

properties, which represent an interesting future direction to

explore.

C. Real-world Evaluation

In this section we showcase the relevance of increasing

the dimensionality of EC in the presence of non-linear force

dynamics. In particular, our goal is to highlight that an EC

of dimension 1 represents a good approximation of linear

force behaviors, but it loses accuracy for non-linear real-

world behaviors as highlighted in Fig. 6a. To fulfill this goal,

we implemented an MLP with two hidden layers of 8 units

each and ReLU as the activation function, and we trained it

with the real-world dataset DRW to predict F t+1
k given at

k and

ECk. We trained different variants of the model by choosing

the dimensionality of the EC in the range nEC ∈ [0,5],
where each of the variants is trained for 1k epochs. Fig. 6b

presents the force prediction MSE of each model on 8 test

elastic samples averaged over 6 randomly-selected seeds,

where the test samples were randomly selected from the

dataset for each seed. Contrarily to what observed for the

simulation experiments, these results show that increasing the

dimensionality of the EC leads to more accurate predictions

of real-world non-linear force profiles with the respect to

the models trained with an EC with dimension equal to

1 (dashed line). This outcome highlights the gap between

simulated and real-world force dynamics. An interesting

future research direction to explore is how this gap hinders

the model performance when trained using simulated data

and then directly applied to real-world textiles. We plan to

investigate this question in our future work and to address

the problem of how to bridge the gap between simulation

and real world for better sim-to-real transfer for deformable

object manipulation.

VI. CONCLUSIONS

In this work, we presented and evaluated Elastic Con-

text (EC), an approach to encode elasticity in data-driven

models of textiles. We have shown the role of the EC in a

force forecasting prediction task on both simulated and real

world data. The EC can be easily employed in real-world

robotic platforms, providing a simple way to understand

elastic properties of textiles in scenarios where no labels are

provided. Such understanding can be of great importance

in assistive robotics and human-robot interaction, where

the manipulation of textile and other deformable objects

is considered. The proposed EC is suitable for describing

elastic properties, while factors influencing manipulation of

textiles go beyond the non-linear elastic behaviors, like for

example friction and flexibility affecting tasks such as ironing

or folding. Furthermore, interesting aspects to study may be

the breaking point of textiles or changing properties when

textiles are covered with substances like water or oil. All

these open new research avenues for the future.
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