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Abstract— We present a virtual reality (VR) framework to
automate the data collection process in cloth folding tasks. The
framework uses skeleton representations to help the user define
the folding plans for different classes of garments, allowing for
replicating the folding on unseen items of the same class. We
evaluate the framework in the context of automating garment
folding tasks. A quantitative analysis is performed on three
classes of garments, demonstrating that the framework reduces
the need for intervention by the user. We also compare skeleton
representations with RGB images in a classification task on
a large dataset of clothing items, motivating the use of the
proposed framework for other classes of garments.

I. INTRODUCTION

There is a growing demand for the automation of gar-
ment production and recycling processes. Automating cloth
manipulation tasks, such as folding or assistive dressing,
could provide considerable benefits in terms of decreasing
labor expenses and reducing physical effort for workers [1].
Yet, robotic manipulation of deformable objects remains
a significant scientific and industrial challenge [2]. Robots
have to rely on methods that can cope with significant self-
occlusions, complex interaction dynamics, motion and task
planning using multimodal data [3]. Recent approaches resort
to deep learning models to alleviate these challenges [4],
[5]. Unfortunately, such models require a lot of training
data, which is expensive to collect for deformable object
manipulation. Therefore, there is a need for approaches that
enable efficient data collection for garment manipulation
tasks and ease collaboration between robots and humans to
reduce the effort and intervention by the latter.

In this context, virtual-, augmented-, and mixed-reality
(VAM) frameworks can be useful to improve human-robot
collaboration, providing a common interface for the human
and robot to interact [6]. Such interfaces allow for more
intuitive and natural communication, simplifying for the
human to give instructions to the robot and for the robot
to communicate its intentions [7]. Different frameworks have
been used in robotics research for data collection and for au-
tomating and facilitating industrial processes [8], [9]. These
frameworks have shown to be preferable over traditional 2D
screen interfaces, as the latter are often less intuitive and
more workload-intensive for human operators [10]. However,
few of the current VR interfaces are tailored to clothing
manipulation, which currently still requires a high level of
human assistance.
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Fig. 1: The proposed VR framework enables human-robot
collaboration for data collection in cloth folding tasks. The
user defines the folding plan by recording the sequence of
pick-place actions to be executed by the robot. The plan is
then replicated on unseen items of the same class.

In this paper, we present a framework for facilitating
human-robot collaboration for data collection in cloth folding
tasks. The concept is visualized in Fig. 1: the interface
leverages the immersive experience provided by VR to
intuitively define folding plans. The proposed framework
uses skeleton representations of garments to allow for auto-
matically replicating folding plans demonstrated by the user
on unseen garments of the same class, resulting in increased
automation and reduced human intervention. We evaluate the
framework by defining folding plans on 3 different classes
of garments, requesting the robot to replicate the plans on
unseen items of the same class. We assess the level of
automation and efficiency of the system by measuring the
amount of intervention needed by the user. To further validate
the use of skeleton representations for automating folding
tasks on novel clothing items, we also employ them in an
unsupervised classification task, comparing the results with
RGB images. In summary, the contributions of our work are:

• A virtual reality framework based on skeleton represen-
tations that automates cloth folding for different classes
of garments.

• A quantitative evaluation of our framework for its
efficacy in automating cloth folding.

• A comparison between skeleton representations and
RGB images in a garments classification task.
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Fig. 2: The framework enables the automation of a folding task (Automatic Folding Execution) while allowing the user to
intervene (User Intervention) if the robot proposes wrong or different folding actions than the ones desired by the user.

II. RELATED WORK

In this section, we provide an overview of the current
VAM frameworks used in robotics manipulation as well as
of the current approaches to cloth manipulation, highlighting
the challenges that hinder the complete automation of cloth
folding tasks.

A. VAM frameworks in robotics

VAM frameworks have been applied in a variety of
contexts in robotics, including motion planning, control, and
human-robot interaction [11], [12]. Studies have also been
conducted on the impact of factors such as gender on in-
teractive robotics and teleoperation [13], and virtual gaming
platforms have been developed to investigate interpretability
and trust in human-robot collaboration [14].

A significant body of work has focused on the use of VR
interfaces for control and teleoperation of robotic systems.
In these studies, the VR interface is used to manipulate the
robotic arm usually via position or velocity control [15], [16]
for example to facilitate data collection for training imitation
learning policies [17]. In [18], a VR framework is proposed
for controlling a multi-robot system composed of various
manipulator robots. Additionally, VAM frameworks have
been proposed to promote the collaboration between humans
and robots in tasks such as handover [19] and to visualize
the states and intentions of the robots in delivery tasks
[7]. These types of frameworks have also been applied in
industrial settings [20], [9] and for interactive programming
of robots [21]. Some of these frameworks typically also
enable visualization of planning in virtual reality prior to
task execution [22], [8].

In the specific context of cloth manipulation, VAM frame-
works are not yet well-established. Waymouth et al. [8]
did propose a 2D interface and a 3D AR framework for
collecting human demonstrations for the task of folding
garments. Differently from our framework, that interface
neither proposed a folding plan nor allowed for replication,
increasing the workload on the user. A similar framework
presented in [23] allowed for the automation of data collec-
tion to train a deep learning architecture to perform robotics
tasks, and was evaluated on folding a small piece of cloth.
However, differently from our framework, that interface does

not enable real-time interaction with the robot, which is
necessary to enable human-robot collaboration. Borràs et
al. [24] proposed a VR framework capable of simulating
realistic garments in real-time, allowing the user to col-
lect interactions through handheld controllers. However, this
framework does not integrate a physical robot and solely
allows the accumulation of synthetic data. Furthermore, it
lacks features to automate these interactions.

B. Cloth manipulation approaches and challenges

Manipulating clothing items poses a significant challenge
due to the large number of degrees of freedom they ex-
hibit, which causes their configuration space to be infinite-
dimensional [2]. To overcome this challenge, current ap-
proaches to cloth manipulation resort to learning or extract-
ing representations. For instance, some methods use particle-
based representations such as graphs or meshes to discretize
the cloth and approximate their dynamics [25], [4], while
others focus on learning latent representations to reduce
the dimensionality of the configuration space and enable
planning [26], [27].

In this context of garment manipulation, the actions are
usually defined as pick-place locations on the garment, either
by extracting landmarks from images [28], [29], [30] or by
selecting nodes of the graph representations. However, since
the representations are extracted from data on a particular
class of garments, the learned policies and plans typically
fail to generalize to unseen shapes, sizes, colors, or properties
[31]. Furthermore, most folding methods assume lifting the
cloth to a predefined height to complete the folding action
[32], [33] as most of the interfaces to collect folding actions
do not include the possibility to vary the height or the
trajectory. However, the final configuration of the garment
varies considerably in relation to different heights of the pick-
place actions. It is then important to include this information
in the data collection process.

To enable generalization it is necessary to collect a large
number of expert demonstrations for each class of garments,
as well as to supervise and possibly modify the actions of
the robot when deploying these models in unseen conditions.
This motivates the framework proposed in this paper, which
is explained in detail in the following section.



III. PROPOSED FRAMEWORK

The goal of our VR framework, shown in Fig. 2, is to
enhance the autonomy of a robot in the data collection of
cloth folding task. To this end, the framework enables a
human user to supervise and assist the robot during the
most challenging steps currently not extensively addressed
in clothing manipulation, which are the definition of a) the
sequence of folding actions (folding plan), b) the pick-place
locations and c) the trajectory of each folding action. The
structure of the framework is composed of two main stages:
a representation extraction stage and a folding plan stage,
where the latter also enables the automatic replication of the
folding task. These two stages are designed with the goal of
reducing the workload of the user to define the folding plan
for new garments of the same class. The user is still asked
to approve all the steps in the pipeline to avoid errors by the
robot during the folding execution.

A. Representation extraction

The representation extraction stage consists of creating
a skeleton representation of the garment, which is a graph
where nodes are used as the pick-place locations that define
each folding action. The user can modify the position of
the nodes in the VR environment to be in any location
on the surface of the garment, as in Fig. 3. The skeleton
representation is intended as an aid to increase automation
by reducing the need for the user to define all the pick-place
locations of the folding actions.

The skeleton representations are extracted from images
obtained from an RGB camera. The RGB images are initially
background masked and binarized. Next, we perform skele-
tonization on the binary image using the thinning algorithm
in [34], [35] and then transform the result into a graph by
creating nodes and edges as in [36]. The main advantage of
using a skeleton representation is that the proposed action
can be defined on the nodes’ indices rather than pixel coor-
dinates, making it easier to replicate it on new items given
that skeletons extracted from the same class of garments most
likely hold the same adjacency matrix.

B. Folding plan

A folding plan is a sequence of consecutive pick-place
folding actions defined by the human and executed by the
robot. A folding plan is defined for a specific class of
garments. To create a new folding action, the user selects and
activates a pick- and a place-node of the skeleton (Fig. 4a).
This triggers the spawning of a middle-node in between the
two, which allows the user to increase or decrease the height
of the trajectory of the end effector of the robot (Fig. 4b).
Once the action is defined, it can be saved in the current
folding plan by using the Add Action to Plan button of the
interface, visible in Fig. 5. The folding plan can then be
replicated on new garments of the same class, which is called
Automatic folding execution. In the replication process, the
framework suggests a series of pick-place actions and relative
trajectories based on the new representation extracted from
the unseen item to be folded (Fig. 6). The user can ask the

robot to propose a folding action using the Propose Action
button. The action can be approved by pressing Send Action
to Robot or modified by the user before execution. The
modifications consist of both resetting and changing the pick-
place nodes of the action (Reset Action) as well as adjusting
the intermediate position of the end-effector throughout the
movement (the ”height” of the trajectory).

Fig. 3: Modification of nodes locations through joystick
interaction.

(a) (b)

Fig. 4: (a) The folding action is defined by selecting the pick-
place nodes. (b) The trajectory can be modified by increasing
or decreasing the height of the middle-node.

Fig. 5: The dashboard the user uses to create, reset, and save
folding actions and plans. The interface allows to visualize
the number of actions in the saved folding plan, as well as
the real-time video streaming of the robot.



C. Hardware setup

We implemented the user interface in Unity 2020.3 and
deploy it on an Oculus Quest 2 headset. We use a Baxter
robot, which was already previously used in cloth folding
manipulation tasks [26]. A ROS (Robot Operating System)
node is used to exchange information between the robot and
the user through TCP (Transmission Control Protocol).

IV. EXPERIMENTS

In this section, we evaluate how the proposed framework
can facilitate the automation of folding different classes of
garments. In particular:

1) We provide quantitative results on the success of the
robot and the amount of intervention needed by the user
when folding plans defined for a cloth of a specific class
are automatically replicated on other clothes of the same
class.

2) To support the hypothesis that skeleton representations
are different enough across different classes to allow
folding plans to be replicated, we provide the results
of an unsupervised classification task on a dataset of
clothing items and compare them to RGB images.

A. Automatic folding execution and User intervention

The objective of the experiment is to assess to which
extent interventions by the user are needed when using the
framework in automatic folding execution. We evaluate the
automation capability by defining and replicating different
folding plans on 3 different classes of clothing items, namely
short sleeve top, long sleeve top and trousers, following the
taxonomy of Deepfashion2 [37]. The object set used in the
experiments is visible in Fig. 7.

The evaluation procedure is visible in Algorithm 1. The
procedure is as follows: for each new class of garments, an
exemplary folding plan is created and saved by the user on
one of the items, which is then replicated on all the items in
the class. When a new item is placed in front of the robot to
be folded, the skeleton representation is visualized in the VR
interface and the user asks the robot to propose the actions
present in the folding plan. For each of the actions in the
folding plan, if the action displayed is the same that the
user defined in the ideal folding plan, the user will accept it
and robot executes it, otherwise the user will intervene and
modify it.

The accuracy results are reported in Table 1. For each
item in each class of garments, the folding plan is replicated
3 times, resulting in 3 · |folding plan| proposals of folding
actions by the robot. The errors can be due to both failures
in the representations extraction and in the proposal of the
folding actions to be executed, where an error means a user
intervention. When a failure happens in the representation
extraction stage, the user has to intervene and redefine the
whole folding plan, as the folding action proposals will
not match the ones defined in the exemplary folding plan.
Failures due to the robot execution (dropping or not releasing
the garment, inverse kinematics errors, etc.) are not reported
in the results.

Fig. 6: Different folding actions proposed by the robot during
the automatic folding execution, pick-nodes displayed in light
blue, place-nodes in blue.

Algorithm 1 Evaluation procedure of automatic execution.

1: R: Robot, U: User.
2: for every Class of Garments do
3: U: defines exemplary Folding Plan
4: for every Garment in Class do
5: Garment is placed in front of Robot.
6: R: displays Skeleton Representation.
7: if U: accepts Skeleton Representation then
8: for every Action in Folding Plan do
9: U: Adjusts nodes position (if needed).

10: R: proposes Folding Action.
11: if U: accepts Folding Action then
12: R: performs Folding Action.
13: else
14: Proposal error.
15: U: defines Folding Action.
16: R: performs Folding Action.
17: end if
18: end for
19: else
20: Representation error.
21: U: adjusts Representation.
22: U: defines new Folding Plan.
23: R: executes Folding Plan.
24: end if
25: end for
26: end for



TABLE I: Results of automatic folding execution.

Class Folding Item Representation Proposal
Plan Accuracy Accuracy

short sleeve top 2 purple 3/3 6/6
green 3/3 6/6
white 2/3 4/6

short sleeve top 4 purple 3/3 12/12
green 3/3 11/12
white 2/3 8/12

long sleeve top 3 large 2/3 6/9
small 3/3 8/9

trousers 2 pois 1/3 2/6
white 3/3 6/6

Fig. 7: The objects set used in the automation experiment:
2 long sleeve top (small, large), 3 short sleeve top (green,
white, purple) and 2 trousers (white, pois).

From the results we can conclude that the user intervention
is limited, meaning that the framework enables a consider-
able increase in the level of automation in cloth folding tasks.
A video showing different automatic folding executions is
present in the supplementary material.

B. Garments unsupervised classification task

Due to the vast diversity and complexity of garment
classification, it would be unrealistic to test all the possible
classes on our framework, especially considering the lack of
uniform labeling standards for clothing items. Our aim is
to determine the potential replicability of a defined folding
plan for unseen clothing items within the same class. This
involves measuring differences in skeleton representations
across diverse garment classes not depicted in Fig. 7. High
accuracy in distinguishing item classes solely based on skele-
ton representations increases the likelihood of replicating the
plan on novel class items. To make our analysis not biased
on specific labels, we examine skeleton representations in
an unsupervised classification task, comparing results with
original RGB images. We resort to two contrastive learning

TABLE II: classes and composition of the training and test
sets (number of samples - percentage).

Id Name Training set Test set

0 short sleeve top 3999 - 18.4% 661 - 19.8%
1 long sleeve top 3999 - 18.4% 661 - 19.8%
2 long sleeve outwear 1877 - 8.6% 257 - 7.7%
3 vest 1645 - 7.5% 226 - 6.7%
4 shorts 1527 - 7.0% 127 - 3.8%
5 trousers 3059 - 14.0% 176 - 5.2%
6 skirt 983 - 4.5% 282 - 8.4%
7 short sleeve dress 2618 - 12.0% 567 - 16.9%
8 vest dress 2070 - 9.5% 380 - 11.4%

TABLE III: classification results using the KNN evaluation
protocol for SimCLR, and the linear evaluation protocol for
MVGRL.

Model Top 1 Acc. Top 5 Acc.

Original-RGB (SimCLR) 54.1 % 84.8 %
Skeleton (MVGRL) 52.4 % 90.7 %
Random 10.9 % 60.2 %

frameworks: SimCLR [38], and MVGRL [39], respectively,
for images and skeleton representations.

The dataset used for the evaluation is a subset of the
Deepfashion2 dataset [37]. The Deepfashion2 dataset con-
tains 491k images of 13 categories of clothing items, which
include attributes such as scale, occlusion, zoom-in, view-
point. For our evaluation, we removed four under-represented
categories (short sleeve outwear, sling, long sleeve dress
and sling dress) and used images with attributes: scale =
moderate, occlusion = no/slight, zoom-in = no and viewpoint
= frontal. The images in the dataset are downsampled and
padded to 160*160 pixels. In total, the final dataset consists
of 25102 images divided into 9 classes, where 85% are used
for training and 15% for testing. The composition of the
dataset can be seen in Table II.

Since in contrastive learning the composition of data
augmentations plays a critical role in increasing the perfor-
mance of the extracted representation, we provide details
on the types of augmentations used both for images and
skeleton representations. From [38], for original-RGB we
apply random-resize-crop, color-jitter, Random horizontal
flip and random grayscale augmentations. From [39], we
apply diffusion, which augments the adjacency matrix of
the skeleton graph with additional edges. We also employ
Horizontal Flip and Vertical Flip, which mirror the graph
respectively on the horizontal and vertical axis. We exper-
imented also with adding noise but found that it decreases
performance, which is also pointed out in [39].

To make the comparison as fair as possible, we present and
evaluate the results from the best-performing augmentations
and the best-performing evaluation protocols from both types
of representations, which in our case is the KNN evaluation



protocol for SimCLR [38] and the linear evaluation protocol
for MVGRL [39]. In this experiment, the batch size is set
to 64, and both models are trained for 1000 epochs. Both
models are trained with the loss functions used in the original
papers (NT-Xent loss [38] for SimCLR and Jensen-Shannon
divergence (JSD) for MVGRL [39]. For comparison, a
random classifier is also implemented as a baseline model,
which randomly assigns class labels to instances in the test
set without any training. We report the Top 1 and Top 5
accuracies of all the models in Table III.

The classification results for skeleton representations are
comparable to original RGB images and considerably better
than random. This suggests that skeleton representations of
different garments are as different as original RGB images,
suggesting that folding plans are likely to be reproducible
also on other garments not evaluated in the automatic folding
experiment. Moreover, these insights open the possibility
of integrating a classification framework based on images
or skeletons in future work, for example, to propose some
default folding plan based on the class of garment.

V. LIMITATIONS AND FUTURE WORK

One current limitation of the framework is that if the
extracted skeleton differs for items of the same class, the
folding plan is not automatically replicable and require some
user intervention. One way to address this may be to allow
rather simple skeletons for each class by limiting the number
of skeleton nodes. We also plan to run a user study to collect
feedback about the interface and test the automation capa-
bilities of the framework more thoroughly with novice users.
We also plan to look into defining bimanual folding actions
by pick-placing 2 nodes simultaneously, to further improve
the data generation aspect by allowing more sophisticated
folding trajectories.

VI. CONCLUSION

We presented a VR framework to automate the data
collection process of cloth folding tasks. The framework
relies on skeleton representations to help the user to define
the folding plan for different classes of garments, allowing
the replication of the folding plan on unseen items of the
same class. We quantitatively evaluate our framework for its
efficacy in automating cloth folding and we compare skeleton
representations with RGB images in a garments unsuper-
vised classification tasks. We conclude that the framework
enhances the automation of cloth folding tasks, and the
classification results suggest that this could be valid also for
classes of garments not evaluated in the automatic folding
experiments. We also plan to further expand the framework
for the automation of flattening tasks, with the aim of
creating a complete interface for the collection of cloth
manipulation data in a more automated manner through
human-robot collaboration.
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